Journal of Medical Academics

Register      Login

VOLUME 6 , ISSUE 1 ( January-June, 2023 ) > List of Articles


Staphylococcus Infections and Emerging Drug Resistance: A Global Concern

Shivani Juneja, Rohit Kalia, Ratinder P Singh, Vandana Roy

Keywords : Bacterial infection, Drug resistance, Gram-positive, Methicillin-resistant Staphylococcus aureus, Staphylococcus aureus

Citation Information : Juneja S, Kalia R, Singh RP, Roy V. Staphylococcus Infections and Emerging Drug Resistance: A Global Concern. Journal of Medical Academics 2023; 6 (1):20-27.

DOI: 10.5005/jp-journals-11003-0124

License: CC BY-NC 4.0

Published Online: 28-06-2023

Copyright Statement:  Copyright © 2023; The Author(s).


Staphylococcus aureus (S. aureus) infections are a global health concern resulting in morbidity and mortality worldwide. Numerous antimicrobial agents (AMAs) have been developed over the years to treat S. aureus infections and then followed by the rapid emergence of resistance to them. Methicillin-resistant S. aureus (MRSA) is one of the modern pathogens which poses a formidable clinical threat. Despite the ongoing development of new antibiotics, active surveillance, and advances in infection prevention, MRSA remains an eminent pathogen persevering with high mortality. The clinical impact can be achieved with some promising newer antibiotics which can deal with different types of infections caused by S. aureus. In this review, we provide an overview of clinical research on the treatment of MRSA infections and summarize the expansive body of literature on the clinical trials done to explore new drugs to counteract S. aureus infections.

  1. Gu F, He W, Xiao S, et al. Antimicrobial resistance and molecular epidemiology of staphylococcus aureus causing bloodstream infections at Ruijin Hospital in Shanghai from 2013 to 2018. Sci Rep 2020;10(1):6019. DOI: 10.1038/s41598-020-63248-5
  2. Tong SY, Davis JS, Eichenberger E, et al. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 2015;28(3):603–661. DOI: 10.1128/CMR.00134-14
  3. Patil SS, Suresh KP, Shinduja R, et al. Prevalence of methicillin-resistant Staphylococcus aureus in India: a systematic review and meta-analysis. Oman Med J 2022;37(4):e440. DOI: 10.5001/omj.2022.22
  4. Naber CK. Staphylococcus aureus bacteremia: epidemiology, pathophysiology, and management strategies. Clin Infect Dis 2009;48 Suppl 4:S231–SS237. DOI: 10.1086/598189
  5. Peterson E, Kaur P. Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Front Microbiol 2018;9:2928. DOI: 10.3389/fmicb.2018.02928
  6. van Hal SJ, Jensen SO, Vaska VL, et al. Predictors of mortality in Staphylococcus aureus bacteremia. Clin Microbiol Rev 2012;25(2):362–386. DOI: 10.1128/CMR.05022-11
  7. Chambers HF, Deleo FR. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 2009;7(9):629–641. DOI: 10.1038/nrmicro2200
  8. Karaman R, Jubeh B, Breijyeh Z. Resistance of gram-positive bacteria to current antibacterial agents and overcoming approaches. Molecules 2020;25(12). DOI: 10.3390/molecules25122888
  9. Peacock SJ, Paterson GK. Mechanisms of methicillin resistance in Staphylococcus aureus. Annu Rev Biochem 2015;84:577–601. DOI: 10.1146/annurev-biochem-060614-034516
  10. Stapleton PD, Taylor PW. Methicillin resistance in Staphylococcus aureus: mechanisms and modulation. Sci Prog 2002;85(Pt 1):57–72. DOI: 10.3184/003685002783238870
  11. Al Johny. Characterization of methicillin-resistant staphylococcus aureus isolated from nearby hospitals from two different countries. J Pure Appl Microbiol 2019;13(3):1683–1688. DOI: 10.22207/JPAM.13.3.42
  12. Gardete S, Tomasz A. Mechanisms of vancomycin resistance in Staphylococcus aureus. J Clin Invest 2014;124(7):2836–2840. DOI: 10.1172/JCI68834
  13. Guo Y, Song G, Sun M, et al. Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Front Cell Infect Microbiol 2020;10:107. DOI: 10.3389/fcimb.2020.00107
  14. Craft KM, Nguyen JM, Berg LJ, et al. Methicillin-resistant Staphylococcus aureus (MRSA): antibiotic-resistance and the biofilm phenotype. Medchemcomm 2019;10(8):1231–1241. DOI: 10.1039/c9md00044e
  15. Negi V. Staphylococcus aureus: an invincible bug. Curr Trends Biomed Eng Biosci 2017;5(5):99–102. DOI: 10.19080/CTBEB.2017.05.555672
  16. Joshi S, Ray P, Manchanda V, et al. Methicillin resistant staphylococcus aureus (MRSA) in India: prevalence & susceptibility pattern. Indian J Med Res 2013;137(2):363–369. DOI: 10.18203/2320-6012.ijrms20172085
  17. Gupta S, Dongre A, Pandey AC, et al. Antibiogram of methicillin resistant staphylococcus aureus (MRSA) in healthcare settings. J Chem Pharmaceut Res 2015;7(8):61–66.
  18. da Costa TM, de Oliveira CR, Chambers HF, et al. PBP4: a new perspective on staphylococcus aureus β-lactam resistance. Microorganisms 2018;6(3): DOI: 10.3390/microorganisms6030057
  19. Foster TJ. Antibiotic resistance in staphylococcus aureus. Current status and future prospects. FEMS Microbiol Rev 2017;41(3):430–449. DOI: 10.1093/femsre/fux007
  20. Ubukata K, Nonoguchi R, Matsuhashi M, et al. Expression and inducibility in Staphylococcus aureus of the mecA gene, which encodes a methicillin-resistant S. aureus-specific penicillin-binding protein. J Bacteriol 1989;171(5):2882–2885. DOI: 10.1128/jb.171.5.2882-2885.1989
  21. Simmons NA, Ball AP, Eykyn SJ, et al. Antibiotic treatment of streptococcal, enterococcal, and staphylococcal endocarditis. Heart 1998;79(2):207–210. DOI: 10.1136/hrt.79.2.207
  22. Ahmed Z, Saeed Khan S, Khan M. In vitro trials of some antimicrobial combinations against Staphylococcus aureus and Pseudomonas aeruginosa. Saudi J Biol Sci 2013;20(1):79–83. DOI: 10.1016/j.sjbs.2012.10.005
  23. Gibb J, Wong DW. Antimicrobial treatment strategies for stenotrophomonas maltophilia: a focus on novel therapies. Antibiotics (Basel) 2021;10(10): DOI: 10.3390/antibiotics10101226
  24. Adra M, Lawrence KR. Trimethoprim/sulfamethoxazole for treatment of severe Staphylococcus aureus infections. Ann Pharmacother 2004;38(2):338–341. DOI: 10.1345/aph.1D156
  25. Paul M, Bishara J, Yahav D, et al. Trimethoprim-sulfamethoxazole versus vancomycin for severe infections caused by meticillin resistant Staphylococcus aureus: randomised controlled trial. BMJ 2015;350:h2219. DOI: 10.1136/bmj.h2219
  26. Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 2001;65(2):232–260; second page, table of contents. DOI: 10.1128/MMBR.65.2.232-260.2001
  27. Ruhe JJ, Menon A. Tetracyclines as an oral treatment option for patients with community onset skin and soft tissue infections caused by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2007;51(9):3298–3303. DOI: 10.1128/AAC.00262-07
  28. Guay DR. Treatment of bacterial skin and skin structure infections. Expert Opin Pharmacother 2003;4(8):1259–1275. DOI: 10.1517/14656566.4.8.1259
  29. Khan A, Wilson B, Gould IM. Current and future treatment options for community-associated MRSA infection. Expert Opin Pharmacother 2018;19(5):457–470. DOI: 10.1080/14656566.2018.1442826
  30. Adhikari RP, Shrestha S, Barakoti A, et al. Inducible clindamycin and methicillin resistant Staphylococcus aureus in a tertiary care hospital, Kathmandu, Nepal. BMC Infect Dis 2017;17(1):483. DOI: 10.1186/s12879-017-2584-5
  31. Brook I, Wexler HM, Goldstein EJ. Antianaerobic antimicrobials: spectrum and susceptibility testing. Clin Microbiol Rev 2013;26(3):526–546. DOI: 10.1128/CMR.00086-12
  32. Cong Y, Yang S, Rao X. Vancomycin resistant Staphylococcus aureus infections: a review of case updating and clinical features. J Adv Res 2020;21:169–176. DOI: 10.1016/j.jare.2019.10.005
  33. Dhand A, Sakoulas G. Reduced vancomycin susceptibility among clinical Staphylococcus aureus isolates (’the MIC Creep’): implications for therapy. F1000 Med Rep 2012;4:4. DOI: 10.3410/M4-4
  34. Kalil AC, Van Schooneveld TC, Fey PD, et al. Association between vancomycin minimum inhibitory concentration and mortality among patients with Staphylococcus aureus bloodstream infections: a systematic review and meta-analysis. JAMA 2014;312(15):1552–1564. DOI: 10.1001/jama.2014.6364
  35. Shajari G, Khorshidi A, Moosavi G. Vancomycin resistance in Staphylococcus aureus strains. Arch Razi Inst 2017;90(54):107–110.
  36. Disease I, Section E. Vancomycin-intermediate (VISA) vancomycin-resistant (VRSA). 2009;2748(504):1–7.
  37. Bryson HM, Brogden RN. Piperacillin/tazobactam. A review of its antibacterial activity, pharmacokinetic properties and therapeutic potential. Drugs 1994;47(3):506–535. DOI: 10.2165/00003495-199447030-00008
  38. Portolés A, Palau E, Puerro M, et al. Health economics assessment study of teicoplanin versus vancomycin in gram-positive infections. Rev Esp Quimioter 2006;19(1):65–75. PMID: 16688294.
  39. Bassetti M, Nicolini L, Repetto E, et al. Tigecycline use in serious nosocomial infections: a drug use evaluation. BMC Infect Dis 2010;10:287. DOI: 10.1186/1471-2334-10-287
  40. Townsend ML, Pound MW, Drew RH. Tigecycline in the treatment of complicated intra-abdominal and complicated skin and skin structure infections. Ther Clin Risk Manag 2007;3(6):1059–1070. PMID: 18516315.
  41. Uzunović S, Bedenić B, Budimir A, et al. Emergency (clonal spread) of methicillin-resistant Staphylococcus aureus (MRSA), extended spectrum (ESBL)–and AmpC beta-lactamase-producing Gram-negative bacteria infections at Pediatric Department, Bosnia and Herzegovina. Wien Klin Wochenschr 2014;126(23-24):747–756. DOI: 10.1007/s00508-014-0597-2
  42. Cattoir V, Dowzicky MJ. A longitudinal assessment of antimicrobial susceptibility among important pathogens collected as part of the Tigecycline Evaluation and Surveillance Trial (T.E.S.T.) in France between 2004 and 2012. Antimicrob Resist Infect Control 2014;3(1):36. DOI: 10.1186/2047-2994-3-36
  43. Hashemian SMR, Farhadi T, Ganjparvar M. Linezolid: a review of its properties, function, and use in critical care. Drug Des Devel Ther 2018;12:1759–1767. DOI: 10.2147/dddt.s164515
  44. Sazdanovic P, Jankovic SM, Kostic M, et al. Pharmacokinetics of linezolid in critically ill patients. Expert Opin Drug Metab Toxicol 2016;12(6):595–600. DOI: 10.1517/17425255.2016.1170807
  45. Keel RA, Schaeftlein A, Kloft C, et al. Pharmacokinetics of intravenous and oral linezolid in adults with cystic fibrosis. Antimicrob Agents Chemother 2011;55(7):3393–3398. DOI: 10.1128/AAC.01797-10
  46. Cai JC, Hu YY, Zhang R, et al. Linezolid-resistant clinical isolates of meticillin-resistant coagulase-negative staphylococci and Enterococcus faecium from China. J Med Microbiol 2012;61(Pt 11):1568–1573. DOI: 10.1099/jmm.0.043729-0
  47. Gu B, Kelesidis T, Tsiodras S, et al. The emerging problem of linezolid-resistant Staphylococcus. J Antimicrob Chemother 2013;68(1):4–11. DOI: 10.1093/jac/dks354
  48. Baos E, Candel FJ, Merino P, et al. Characterization and monitoring of linezolid-resistant clinical isolates of Staphylococcus epidermidis in an intensive care unit 4 years after an outbreak of infection by cfr-mediated linezolid-resistant Staphylococcus aureus. Diagn Microbiol Infect Dis 2013;76(3):325–329. DOI: 10.1016/j.diagmicrobio.2013.04.002
  49. Pillai SK, Sakoulas G, Wennersten C, et al. Linezolid resistance in Staphylococcus aureus: characterization and stability of resistant phenotype. J Infect Dis 2002;186(11):1603–1607. DOI: 10.1086/345368
  50. Musumeci R, Calaresu E, Gerosa J, et al. Resistance to Linezolid in Staphylococcus spp. clinical isolates associated with ribosomal binding site modifications: novel mutation in domain v of 23S rRNA. New Microbiol 2016;39(4):269–273. PMID: 27727405.
  51. Falagas ME, Vardakas KZ. Benefit-risk assessment of linezolid for serious gram-positive bacterial infections. Drug Saf 2008;31(9):753–768. DOI: 10.2165/00002018-200831090-00004
  52. Quinn DK, Stern TA. Linezolid and serotonin syndrome. Prim Care Companion J Clin Psychiatry 2009;11(6):353–356. DOI: 10.4088/PCC.09r00853
  53. Rasmussen RV, Fowler VG Jr, Skov R, et al. Future challenges and treatment of Staphylococcus aureus bacteremia with emphasis on MRSA. Future Microbiol 2011;6(1):43–56. DOI: 10.2217/fmb.10.155
  54. Silverman JA, Perlmutter NG, Shapiro HM. Correlation of daptomycin bactericidal activity and membrane depolarization in Staphylococcus aureus. Antimicrob Agents Chemother 2003;47(8):2538–2544. DOI: 10.1128/AAC.47.8.2538-2544.2003
  55. Bradley J, Glasser C, Patino H, et al. Daptomycin for complicated skin infections: a randomized trial. Pediatrics 2017;139(3): DOI: 10.1542/peds.2016-2477
  56. Anderson TP, Wong JSJ, Werno AM. Early-onset rhabdomyolysis related to daptomycin use. 2007;30:2006–2008.
  57. Cui L, Tominaga E, Neoh HM, et al. Correlation between Reduced Daptomycin Susceptibility and Vancomycin Resistance in Vancomycin-Intermediate Staphylococcus aureus. Antimicrob Agents Chemother 2006;50(3):1079–1082. DOI: 10.1128/AAC.50.3.1079-1082.2006
  58. Bonkowski J, Daniels AR, Peppard WJ. Role of telavancin in treatment of skin and skin structure infections. Clin Cosmet Investig Dermatol 2010;3:127–133. DOI: 10.2147/CCID.S9027
  59. Stryjewski ME, Chu VH, O’Riordan WD, et al. Telavancin versus standard therapy for treatment of complicated skin and skin structure infections caused by gram-positive bacteria: FAST 2 study. Antimicrob Agents Chemother 2006;50(3):862–867. DOI: 10.1128/AAC.50.3.862-867.2006
  60. Binda E, Marinelli F, Marcone GL. Old and new glycopeptide antibiotics: action and resistance. Antibiotics (Basel) 2014;3(4):572–594. DOI: 10.3390/antibiotics3040572
  61. Koomanachai P, Crandon JL, Nicolau DP. Newer developments in the treatment of gram-positive infections. Expert Opin Pharmacother 2009;10(17):2829–2843. DOI: 10.1517/14656560903357491
  62. Sims CR, Bressler AM, Graham DR, et al. Real-world clinical use and outcomes of telavancin for the treatment of bone and joint infections: results from the telavancin observational use registry (TOUR™). Drugs Real World Outcomes 2021;8(4):509–518. DOI: 10.1007/s40801-021-00255-6
  63. Laudano JB. Ceftaroline fosamil: a new broad-spectrum cephalosporin. J Antimicrob Chemother 2011;66(Suppl 3):iii11–18. DOI: 10.1093/jac/dkr095
  64. Frampton JE. Ceftaroline fosamil: a review of its use in the treatment of complicated skin and soft tissue infections and community-acquired pneumonia. Drugs 2013;73(10):1067–1094. DOI: 10.1007/s40265-013-0075-6
  65. File TM Jr, Wilcox MH, Stein GE. Summary of ceftaroline fosamil clinical trial studies and clinical safety. Clin Infect Dis 2012;55(Suppl 3):S173–S180. DOI: 10.1093/cid/cis559
  66. Merker A, Danziger LH, Rodvold KA, et al. Pharmacokinetic and pharmacodynamic evaluation of ceftaroline fosamil. Expert Opin Drug Metab Toxicol 2014;10(12):1741–1750. DOI: 10.1517/17425255.2014.972932
  67. File TM Jr, Low DE, Eckburg PB, et al. FOCUS 1: a randomized, double-blinded, multicentre, Phase III trial of the efficacy and safety of ceftaroline fosamil versus ceftriaxone in community-acquired pneumonia. J Antimicrob Chemother 2011;66 Suppl 3:iii19–32. DOI: 10.1093/jac/dkr096
  68. Koulenti D, Xu E, Mok IYS, et al. Novel antibiotics for multidrug-resistant gram-positive microorganisms. Microorganisms 2019;7(8): DOI: 10.3390/microorganisms7080270
  69. Ramdeen S, Boucher HW. Dalbavancin for the treatment of acute bacterial skin and skin structure infections. Expert Opin Pharmacother 2015;16(13):2073–2081. DOI: 10.1517/14656566.2015.1075508
  70. Chambers HF. Ceftobiprole: in-vivo profile of a bactericidal cephalosporin. Clin Microbiol Infect 2006;12(Suppl 2):17–22. DOI: 10.1111/j.1469-0691.2006.01404.x
  71. Murthy B, Schmitt-Hoffmann A. Pharmacokinetics and pharmacodynamics of ceftobiprole, an anti-MRSA cephalosporin with broad-spectrum activity. Clin Pharmacokinet 2008;47(1):21–33. DOI: 10.2165/00003088-200847010-00003
  72. Dauner DG, Nelson RE, Taketa DC. Ceftobiprole: a novel, broad-spectrum cephalosporin with activity against methicillin-resistant Staphylococcus aureus. Am J Health Syst Pharm 2010;67(12):983–993. DOI: 10.2146/ajhp090285
  73. Hasannejad-Bibalan M, Mojtahedi A, Biglari H, et al. Antibacterial activity of tedizolid, a novel oxazolidinone against methicillin-resistant Staphylococcus aureus: a systematic review and meta-analysis. Microb Drug Resist 2019;25(9):1330–1337. DOI: 10.1089/mdr.2018.0457
  74. Hall RG 2nd, Smith WJ, Putnam WC, et al. An evaluation of tedizolid for the treatment of MRSA infections. Expert Opin Pharmacother 2018;19(13):1489–1494. DOI: 10.1080/14656566.2018.1519021
  75. Roch M, Varela MC, Taglialegna A, et al. Tedizolid is a promising antimicrobial option for the treatment of Staphylococcus aureus infections in cystic fibrosis patients. J Antimicrob Chemother 2020;75(1):126–134. DOI: 10.1093/jac/dkz418
  76. Tanigawara Y, Sato R, Morita K, et al. Population pharmacokinetics of Arbekacin in patients infected with methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2006;50(11):3754–3762. DOI: 10.1128/AAC.00420-05
  77. Matsumoto T. Arbekacin: another novel agent for treating infections due to methicillin-resistant Staphylococcus aureus and multidrug-resistant Gram-negative pathogens. Clin Pharmacol 2014;6:139–148. DOI: 10.2147/CPAA.S44377
  78. Hwang JH, Lee JH, Moon MK, et al. The usefulness of arbekacin compared to vancomycin. Eur J Clin Microbiol Infect Dis 2012;31(7):1663–1666. DOI: 10.1007/s10096-011-1490-9
  79. Bhagwat SS, Nandanwar M, Kansagara A, et al. Levonadifloxacin, a novel broad-spectrum anti-MRSA benzoquinolizine quinolone agent: review of current evidence. Drug Des Devel Ther 2019;13:4351–4365. DOI: 10.2147/DDDT.S229882
  80. Koulenti D, Xu E, Song A, et al. Emerging treatment options for infections by multidrug-resistant gram-positive microorganisms. Microorganisms 2020;8(2):191. DOI: 10.3390/microorganisms802019
  81. Watkins RR, Deresinski S. Omadacycline: a novel tetracycline derivative with oral and intravenous formulations. Clin Infect Dis 2019;69(5):890–896. DOI: 10.1093/cid/ciz242
  82. Zhanel GG, Esquivel J, Zelenitsky S, et al. Omadacycline: a novel oral and intravenous aminomethylcycline antibiotic agent. Drugs 2020;80(3):285–313. DOI: 10.1007/s40265-020-01257-4
  83. Abrahamian FM, Sakoulas G, Tzanis E, et al. Omadacycline for acute bacterial skin and skin structure infections. Clin Infect Dis 2019;69(Suppl 1):S23–S32. DOI: 10.1093/cid/ciz396
  84. Saravolatz LD, Stein GE. Delafloxacin: a new anti-methicillin-resistant staphylococcus aureus fluoroquinolone. Clin Infect Dis 2019;68(6):1058–1062. DOI: 10.1093/cid/ciy600
  85. Ocheretyaner ER, Park TE. Delafloxacin: a novel fluoroquinolone with activity against methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa. Expert Rev Anti Infect Ther 2018;16(7):523–530. DOI: 10.1080/14787210.2018.1489721
  86. Pullman J, Gardovskis J, Farley B, et al. Efficacy and safety of delafloxacin compared with vancomycin plus aztreonam for acute bacterial skin and skin structure infections: a phase 3, double-blind, randomized study. J Antimicrob Chemother 2017;72(12):3471–3480. DOI: 10.1093/jac/dkx329
  87. Zhanel GG, Deng C, Zelenitsky S, et al. Lefamulin: a novel oral and intravenous pleuromutilin for the treatment of community-acquired bacterial pneumonia. Drugs 2021;81(2):233–256. DOI: 10.1007/s40265-020-01443-4
  88. Kollef MH, Betthauser KD. New antibiotics for community-acquired pneumonia. Curr Opin Infect Dis 2019;32(2):169–175. DOI: 10.1097/QCO.0000000000000526
  89. Lee YR, Burton CE. Eravacycline, a newly approved fluorocyclinee. Eur J Clin Microbiol Infect Dis 2019;38(10):1787–1794. DOI: 10.1007/s10096-019-03590-3
  90. Deck DH, Winston LG. Chemotherapeutic drugs. In:Katzung BG, Masters SB, Trevor AJ, editors. Basic and Clinical Pharmacology. 12th ed. New York: McGraw Hill; 2012. p. 790–831.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.